Abstract
A concise synthetic route to the carbocyclic core of the cornexistins is reported.
The route is highlighted by a Diels-Alder cycloaddition/oxidative cleavage strategy
to generate the central highly functionalized nine-member ring. A silyl-tethered ring-closing
metathesis strategy is utilized to control trisubstituted alkene geometry.
Key words
Diels-Alder - oxidative cleavage - natural products - ring expansion - ring-closing
metathesis - carbocycle
References
<A NAME="RC00907SS-1">1 </A>
Nakajima M.
Itoi K.
Takamatsu Y.
Sato S.
Furukawa Y.
Furuya K.
Honma T.
Kadotani J.
Kozasa M.
Haneishi T.
J. Antibiot.
1991,
44:
1065
<A NAME="RC00907SS-2">2 </A>
Fields SC.
Mireles-Lo L.
Gerwick BC.
J. Nat. Prod.
1996,
59:
698
<A NAME="RC00907SS-3">3 </A>
Barton DHR.
Sutherland JK.
J. Chem. Soc.
1965,
1769
<A NAME="RC00907SS-4A">4a </A>
Spiegel DA.
Njardarson JT.
McDonald IM.
Chem. Rev.
2003,
103:
2691
<A NAME="RC00907SS-4B">4b </A>
Hayashi Y.
Itoh T.
Fukuyama T.
Org. Lett.
2003,
5:
2235
<A NAME="RC00907SS-5">5 </A>
Stork G.
Tabak JM.
Blount JF.
J. Am. Chem. Soc.
1972,
94:
4735
<A NAME="RC00907SS-6A">6a </A>
White JD.
Kim J.
Drapela NE.
J. Am. Chem. Soc.
2000,
122:
8665
<A NAME="RC00907SS-6B">6b </A>
White JD.
Dillon MP.
Butlin RJ.
J. Am. Chem. Soc.
1992,
114:
9673
<A NAME="RC00907SS-7">7 </A>
Clark JS.
Marlin F.
Nay B.
Wilson C.
Org. Lett.
2003,
5:
89
<A NAME="RC00907SS-8">8 </A>
Wender PA.
Lechleiter JC.
J. Am. Chem. Soc.
1977,
99:
267
<A NAME="RC00907SS-9">9 </A>
Aldehyde 5 was derived from the monoprotection of propane-1,3-diol (BuLi, TBSCl, THF, -78 °C
to reflux) and TEMPO/bleach oxidation.
<A NAME="RC00907SS-10">10 </A> The syn -relationship of 8 was determined by removal of the protecting groups, formation of the acetonide and
Rychnovsky 13 C analysis:
Rychnovsky SD.
Ryan BN.
Richardson TI.
Acc. Chem. Res.
1998,
31:
9
<A NAME="RC00907SS-11">11 </A>
Mitsunobu O.
Synthesis
1981,
1
<A NAME="RC00907SS-12">12 </A>
Trost BM.
Lee DC.
J. Am. Chem. Soc.
1988,
110:
7255
<A NAME="RC00907SS-13">13 </A>
Crystal data, selected bond lengths and angles for 3 : Formula: C30 H44 O7 Si, MW = 544.74, a = 10.3090(4) Å, b = 12.2193(5) Å, c = 13.9422(5) Å, α = 70.593(2)°, β = 78.609(2)°, γ = 74.217(2)°, P 1, V = 1582.90(11) Å3 , Z = 2, R
1 = 0.0588, wR
2 = 0.1815. Data collection: 0.5° φ and ω scans, CCD area detector. Solved by direct
methods and refined by full-matrix least-squares refinement against F
2 . Selected bond lengths (Å): O2-C1: 1.429(4), C2-C3: 1.497(4), C8-C9: 1.525(5), C1-C2:
1.499(4), C3-C28: 1.542(4). Selected bond angles (°): C1-O2-C16: 112.5(3), O2-C1-C2:
111.2(3), O2-C1-C9: 113.5(3), C2-C1-C9: 102.5(3), C2-C3-C4: 110.5(2), C2-C3-C28: 112.6(2),
C4-C3-C28: 112.6(2). Details of the crystal structure determination have been deposited
with the Cambridge crystallographic Data Centre and may be retrieved at www.ccdc.cam.ac.uk
by citing CCDC 642483.
<A NAME="RC00907SS-14A">14a </A>
Pine SH.
Kim G.
Lee V.
Org. Synth.
1990,
69:
72
<A NAME="RC00907SS-14B">14b </A>
Renneberg D.
Pfander H.
Leumann CJ.
J. Org. Chem.
2000,
65:
9069
<A NAME="RC00907SS-15A">15a </A>
Gauthier DR.
Zandi KS.
Shea KJ.
Tetrahedron
1998,
54:
2289
For an elegant example of the use of a temporary tether to control olefin geometry,
see:
<A NAME="RC00907SS-15B">15b </A>
Evans DA.
Carreira EM.
Tetrahedron Lett.
1990,
31:
4703
Inspired by our initial results, this strategy has recently been successfully applied
to total synthesis, see,
<A NAME="RC00907SS-15C">15c </A>
Li F.
Miller MJ.
J. Org. Chem.
2006,
71:
5221
<A NAME="RC00907SS-16">16 </A>
Scholl M.
Ding S.
Lee CW.
Grubbs RH.
Org. Lett.
1999,
1:
953
<A NAME="RC00907SS-17">17 </A>
Tamao K.
Ishida N.
Kumada M.
Org. Synth.
1990,
69:
96